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Abstract: We describe some of the novel 6d quantum field theories which have
been discovered in studies of string duality. The role these theories (and their 4d
descendants) may play in alleviating the vacuum degeneracy problem in string theory
is reviewed. The DLCQ of these field theories is presented as one concrete way of
formulating them, independent of string theory.

1 Introduction

Recent advances in string theory have led to the discovery of many new interacting
theories without gravity. These theories are found by taking special limits of M-
theory, in which many of the degrees of freedom decouple. In this talk we will:
I. Describe some examples of these new theories.
II. Review why it is important to fully understand these examples.
III. Propose a definition of these theories, in the light-cone frame, which is manifestly
independent of M or string theory.

2 Examples

1Based on a talk given at the “31st International Symposium Ahrenshoop on the Theory of
Elementary Particles,” Buckow, Germany, September 2-6 1997
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2.1 Theories with (2, 0) Supersymmetry

The first (and simplest) examples were found by Witten [1], in studying type IIB
string theory on K3. He considers the situation where the K3 develops an A −
D − E singularity. In the IIA theory, one finds extra massless gauge bosons in
these circumstances. These extra vectors of the (1,1) supersymmetry are required
by string-string duality, and arise from D2 branes which wrap the collapsing 2-cycles
and become massless in the singular limit.

In the IIB theory, there is a chiral (2,0) supergravity in six dimensions. The only
massless multiplet of the (2,0) supersymmetry (other than the gravity multiplet) is
the tensor multiplet, which consists of 5 scalars, some chiral fermions, and a self-dual
two form Bµν which satisfies

dB = ∗dB (1)

The (2,0) supergravity requires the presence of precisely 21 tensor multiplets
for anomaly freedom. Therefore, it is hard to envision a scenario where one finds
extra massless particles at the singular point in moduli space. However, further
compactification on an S1 yields a theory related to the IIA theory by T-duality,
so one must find (after S1 compactification) gauge bosons of the A − D − E gauge
group. What is their IIB origin?

Further compactify the IIA and IIB theories on circles with radii RA,B. Then T-
duality relates the theories with RA = 1

RB

(we are temporarily setting the string scale
α′ to one for simplicity). The relation between the six-dimensional string couplings
λA,B is

1

λA

=
RB

λB

(2)

If we consider a point in IIA moduli space a distance ǫ from the singular point, then
there are W-bosons coming from wrapped D2 branes whose masses go like

MW =
ǫ

λA

(3)

So in type IIB, the mass is

MW =
ǫRB

λB

(4)

This looks like the mass of a string wrapped around the S1 in the IIB theory! But
this string is not the critical type IIB string; from equation (4) it must have a tension

T =
ǫ

λB

(5)

Of course, this string comes from a D3 brane wrapped around a collapsing sphere in
the K3 of area ≃ ǫ.

For very small ǫ, T << 1

α′
. So we get an A − D − E series of quantum theories

in six dimensions which contain light string solitons. Because the noncritical strings
are very light compared to the fundamental string scale, one can decouple gravity.
Then, it is believed that one is left with an interacting quantum field theory in six

2



dimensions. As ǫ → 0, one approaches a nontrivial fixed point of the renormalization
group.

In six-dimensions, strings are dual to strings. The particular light strings in
question are self-dual (the H = dB they produce is self-dual as in equation (1)), so
the “coupling” of these quantum theories is fixed and of order one. In other words,
there is no coupling constant which can serve as an expansion parameter.

By using ALE spaces instead of K3, one can find such interacting theories for
each Ak or Dk singularity. For the Ak theories, there is another simple description
due to Strominger and Townsend [2, 3]. For instance, consider two parallel M5 branes
in eleven-dimensional flat spacetime. There are membranes which can end on the
M5 branes, yielding a noncritical string on the fivebrane worldvolume with tension
proportional to the separation.

M5 brane

stretched
membrane

Figure 1: A membrane stretching between two M5 branes.

Each fivebrane has a tensor multiplet on its worldvolume (the five scalar compo-
nents parametrize the transverse position of the fivebrane in eleven dimensions). If

we denote the two five-tuples of scalars by ~φ1,2, then the VEVs 〈~φ1,2〉 label different

vacua of an effective six-dimensional theory. When ~φ1 → ~φ2, the noncritical strings
become tensionless and we find another description of the A1 fixed point above.

More precisely, if we say the fivebranes are separated by a distance L, the limit
one wishes it to take is

Mpl → ∞, L → 0, T = LM3

pl fixed (6)

In this limit, gravity decouples but the noncritical strings stay light, yielding an
interacting theory without gravity. The obvious generalization with k fivebranes
yields the Ak−1 (2,0) fixed point, with moduli space

Mk =
R5k

Sk

(7)
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given by the positions of the parallel fivebranes, mod permutations. At generic points
on Mk, the low energy theory has k tensor multiplets.

2.2 Theories with (1, 0) Supersymmetry

New interacting 6d theories with (1,0) supersymmetry have also been discovered
[4, 5]. Perhaps the simplest example is the following. Consider Horava and Witten’s
description of the E8 ×E8 heterotic string as M-theory on S1/Z2 [6] . The length of
the interval is related to the heterotic gs, while E8 gauge fields live on each of the
two “end of the world” ninebranes.

We can consider a fivebrane at some point on the interval. Its position in the
S1/Z2 is parametrized by the real scalar φ in a (1,0) tensor multiplet, while its other
transverse positions are scalars in a (1,0) hypermultiplet. Since it is a scalar in six
dimensions, φ naturally has dimension two; we will say the two E8 walls are located
at φ = 0 and φ = 1

α′
. Then, one has noncritical strings on the fivebrane world volume

with tensions

T1 = φ, T2 = (
1

α′
− φ) (8)

coming from membranes with one end on the fivebrane and one end on the nine-
branes.

 E8 Ninebrane                                                 E8 Ninebrane

    5 brane

Figure 2: A fivebrane between two ninebranes and two 5-9 membranes.

As φ → 0 or φ → 1

α′
, one again finds that the lightest degrees of freedom in

the theory are solitonic self-dual noncritical strings. The theory on the fivebrane
needs to also have an E8 global symmetry, to couple consistently to the E8 gauge
fields on the end of the world. Therefore, one concludes that when the fivebrane hits
the ninebrane, one finds a nontrivial (1,0) supersymmetric RG fixed point, with E8

global symmetry.
For both the (2,0) Ak theories and the E8 theory in 6d, there is no known UV

free Lagrangian which flows, in the IR, to the fixed point of interest. Therefore, it is
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of intrinsic interest to find a definition of these quantum field theories which is inde-
pendent of string or M-theory. We will propose such a definition in §4. Before doing
that, it seems proper to provide some motivations for the study of these theories.

3 Why are these theories of interest?

There are at least three motivations for studying these theories:
a) These are the first examples of nontrivial fixed point quantum field theories above
four dimensions. For instance, if one does a very naive analysis of gauge field theory
in d dimensions

L =
∫

ddx
1

g2
F 2

µν + · · · (9)

one finds that [g2] = 4 − d (in mass units), so the theory is infrared free for d > 4.
Hence, the theories of §2 are of intrinsic interest as a new class of interacting quantum
field theories.
b) These theories play a crucial role in the study of M(atrix) theory compactifica-
tions. In M(atrix) theory, one starts with the maximally supersymmetric D0 brane
quantum mechanics, with N zero branes giving the DLCQ in a sector with light-like
momentum N and the N → ∞ limit yielding the 11d uncompactified theory [8, 9].
To study compactifications on a transverse T n, one then T-dualizes the U(N) D0
brane quantum mechanics to obtain a description of M-theory on T n as the n + 1
dimensional U(N) Super Yang-Mills theory compactified on the dual torus, T̃ n.

An obvious problem with this approach is that for n > 3, the Super Yang-Mills
is ill-defined at short distances (it is not renormalizable). Let us consider the first
such case: M-theory on T 4. The U-duality group in this case is SL(5, Z). This
suggests that perhaps the M(atrix) definition involves some 5+1 dimensional QFT
compactified on a T̃ 5, geometrizing the SL(5, Z) U-duality group as the modular
group of the torus. The unique candidate which is well-defined (and has the correct
supersymmetry) is the AN (2,0) quantum field theory of §2 [10, 11]. But, how does
this prescription relate to our expectation that the theory should be 4+1 U(N) SYM?

The 5d SYM theory has a conserved U(1) current

j = ∗(F ∧ F ) (10)

We can identify j with the Kaluza-Klein U(1) symmetry of the (2,0) theory com-
pactified on an S1 of radius L̃5, if we say

2πL̃5 =
g2

2π
(11)

The 5d theory has particles which are 4d instantons, and whose action is given by
4π2 n

g2 for the “n-instanton” particle. These in turn can be interpreted as Kaluza-

Klein modes coming from the (2,0) theory with a momentum p5 = n

L̃5

around the

hidden “extra” circle which promotes T̃ 4 to T̃ 5. In this way, one ends up with the
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prescription that M-theory on T 4 is defined by the (2,0) theory on T̃ 5 [10, 11]. This
makes the SL(5,Z) U-duality manifest.
c) These novel interacting theories play a crucial role in the unification of M-theory
vacua. Consider, for instance, the heterotic E8 × E8 theory compactified on K3.
There is a Bianchi identity for the three-form field strength H which looks like

dH = Tr(R ∧ R) − Tr(F ∧ F ) (12)

where R is the curvature and F is the Yang-Mills field strength. Integrating (12)
over the K3, we find that there should be n1,2 Yang-Mills instantons in the two E8s,
with

n1 + n2 = 24 . (13)

It is then natural to ask: How are vacua with different choices of n1,2 connected to
each other?

Consider the n1 instantons in one E8 wall. Instanton moduli space has singulari-
ties, including points where a single instanton shrinks to “zero size.” In the heterotic
theory, this small instanton can now be represented as a fivebrane sitting at the E8

wall. But, now there is a new branch in the moduli space of vacua - in addition to
re-expanding into a large E8 instanton, the fivebrane can move off into the S1/Z2

interval! In the process, one loses 29 hypermultiplet moduli (the moduli of one E8 in-
stanton) and gains a single tensor multiplet (the real scalar parametrizes the position
of the fivebrane in the interval). Hence, one is left with n1 − 1 instantons on the E8

wall. By moving across the interval and entering the other wall as an instanton, the
fivebrane can effect a transition from a vacuum with instanton distribution (n1, n2)
to a vacuum with instanton distribution (n1−1, n2+1). In this way, the perturbative
heterotic vacua with different numbers of instantons in the two E8s are all connected
[4, 5]. More generally, one can modify equation (13) to read n1 +n2 +n5 = 24, where
now n5 is the number of five-branes in the interval [7].

We have glossed over an important point here: The (1,0) tensor multiplet (on
the fivebrane worldvolume) contains a self-dual tensor B+

µν . No conventional mass
term is possible for the tensor, since there is no B−

µν that B+
µν can pair up with. So,

how can transitions changing the number of tensor multiplets ever occur?
When the transition occurs, we are precisely in the situation described in §2.2,

where there is an interacting (1,0) superconformal field theory with E8 global symme-
try. There is no weakly coupled description of this fixed point, and a phase transition
can occur there. By going through this nontrivial fixed point, it is possible to connect
the two branches with different numbers of tensor multiplets. So, the novel theories
of §2 are of apparent use in unifying 6d (0,1) supersymmetric vacua.

In fact, related theories also seem to play an important role in connecting 4d
N = 1 vacua. For instance, one can compactify the E8 × E8 heterotic string on a
Calabi-Yau threefold M which is a K3 fibration. In many examples, one finds a low-
energy theory with chiral gauge representations. For instance, if one has embedded
an SU(3) bundle V with c1(V ) = 0 in one of the E8s, the unbroken subgroup of E8

is E6. The matter fields come in the 27 and 27 representations, and one finds for
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the net number N = |#27 − #27| of generations:

N =
1

2
|
∫

M
c3(V )| . (14)

Among the singular loci in the moduli space of vacua, there are places where V
develops a curve of singularities which corresponds to a small instanton in the generic
K3 fiber of M . One can represent this small instanton as a fivebrane wrapping the
base of the fibration. In certain cases, there is a new branch of the moduli space
where the wrapped fivebrane can move away from the E8 wall into the S1/Z2. It
was argued in [12] that in many cases this changes the net number of generations
of the E6 gauge theory remaining on the wall. Related phenomena were discussed
in [13, 14]. So, phase transitions through close relatives of the E8 fixed point in
six dimensions can also connect up 4d string vacua with different net numbers of
generations.

4 A Proposed M(atrix) Description

In §3, we have seen several interesting applications of the new interacting 6d field
theories. However, for both the (2,0) supersymmetric theories and the (1,0) theories
with E8 global symmetry, there is no obvious definition of the theory that doesn’t
involve an embedding in M-theory. This is a very un − economical way of defining
a quantum field theory – one starts with far too many degrees of freedom, and must
decouple most of them from the quantum field theory of interest.

An alternative way of describing the (2,0) theories was proposed in [15, 16], and
extended to the (1,0) theories in [17, 18]. We will discuss the simplest case – the Ak−1

(2,0) theory, i.e. the theory of k coincident M 5-branes. We know several suggestive
facts about this theory:
• If we compactify the 6d theory on a circle with radius R, it produces a 5d U(k)
Super Yang-Mills theory with coupling g2

5 = R.
• The Kaluza-Klein particles (with p5 = 1

R
) are “instantons” of the U(k) gauge

theory (i.e., 4d Yang-Mills instantons which look like particles in 5d).
These facts suggest that, in analogy with the M(atrix) approach to M-theory [8], we
should search for a light-cone quantization of the Ak−1 (2,0) theory.

4.1 DLCQ of (2,0) Ak−1 Theory

Let us take our 5+1 dimensions to be parametrized by X0, · · · , X5. In normal light-
cone quantization, one defines X± = X0±X1 and gives initial conditions on a surface
of fixed X+. Then, one evolves forward in light-cone “time” using the Hamiltonian
H = P+. The modes of quantum fields with P− < 0 are canonical conjugates of
modes of P− > 0, so we can choose the vacuum to be annihilated by the P− < 0
modes. The P− = 0 modes are not dynamical (but can give rise to subtleties, which
will be mentioned below).
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In discrete light-cone quantization (or DLCQ) [9], one in addition compactifies
the light-like direction

X− ≃ X− + 2πR (15)

Then, P− is quantized in units of 1/R. For finite N , the DLCQ Fock space is very
simple, since there are a finite number of modes. However integrating out the zero
momentum modes can, in the DLCQ of some theories, lead to complicated interac-
tions [19]. The decompactification limit (where one recovers Lorentz invariance) is
taken by going to large R at fixed P−, which is equivalent to going to large N .

Following [20], one may find it fruitful to view the compactification of X− as the
limit of a space-like compactification

X− ≃ X− + 2πR, X+ ≃ X+ +
R2

s

R
(16)

where Rs → 0. For finite Rs, one can boost this to a spatial compactification

X1 ∼ X1 + Rs, P− =
N

R
→ P1 =

N

Rs

(17)

Then, our interest is in describing modes of momentum P1 as Rs → 0. In many
cases, this can be rather complicated. But for the (2,0) superconformal theories,
we get a very weakly coupled (g2 = Rs) U(k) Super Yang-Mills theory in 4+1
dimensions, with N “instantons” (carrying charge under J = ∗(F ∧ F )). If we want
these to have finite energy in the original reference frame, they must have very small
velocities. So for Rs → 0, it seems that we should get a quantum mechanical sigma
model on the moduli space of N U(k) instantons. The space-time supersymmetry
implies that this sigma model should have 8 supercharges.

We will now give a more direct derivation of the relevant quantum mechanics
from M(atrix) theory.

4.2 Derivation from M(atrix) Theory

Following Berkooz and Douglas [21], we know that the background of k longitudinal
5-branes in M(atrix) theory can be represented by studying the theory of N zero
branes in the background of k D4 branes in Type IIA string theory. The presence
of the D4 branes (and the consequent 0-4 strings) break the supersymmetry of the
quantum mechanics to N = 8.

The resulting quantum mechanics is in fact the dimensional reduction of a 6d (0,1)
supersymmetric system, which is a U(N) gauge theory with k fundamental hypermul-
tiplets and an additional adjoint hyper. The quantum mechanics has a U(N) gauge
symmetry and an SO(4)‖×SO(5)⊥ ×U(k) global symmetry. The bosonic fields are
X⊥, X‖ and q with charges (N2, 1, 5, 1), (N2, (2, 2), 1, 1) and (N, (2, 1), 1,k) under
the gauge and global symmetries. Roughly speaking, X⊥ characterizes the positions
of the 0 branes transverse to the 4-branes, while X‖ characterizes their positions in
the directions along the 4-branes.

8



The moduli space of vacua has various branches, but two are of particular interest
to us 2:
1) The Coulomb branch

On this branch, X⊥, X‖ 6= 0 while q = 0. This is the branch where the 0 branes
are moving around in spacetime away from the D4 branes, as depicted in Figure 3
below.

      D4 branes

D0 branes

Figure 3: A picture of a point on the Coulomb branch.

2) The Higgs branch
On this branch X⊥ = 0 while X‖, q 6= 0. The D0 branes are inside of the D4

branes, as shown below in Figure 4. We will denote the Higgs branch moduli space
for given N and k by MN,k.

So roughly speaking, the Higgs branch is concerned with the physics on the
fivebranes while the Coulomb branch captures the physics away from the fivebranes
(e.g. 11d supergravity). This leads us to believe that the quantum mechanics on
the Higgs branch will offer a M(atrix) description of the interacting field theories
discussed in §2.1. More precisely, if we want to decouple gravity from the physics on
the fivebranes, we need to take the limit Mpl → ∞. Then in particular, the coupling
in the quantum mechanics gQM which is related to R and Mpl by g2

QM = R3M6
pl also

satisfies gQM → ∞. This is the infrared limit of the quantum mechanics.

2Of course strictly speaking the quantum mechanics has no moduli space of vacua, but as
usual in discussions of M(atrix) theory we can imagine a moduli space in the Born-Oppenheimer
approximation.
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D0 branes inside D4 branes
Figure 4: A picture of a point on the Higgs branch.

The surprising fact is that in this strong coupling limit, many simplifications
occur:
1) For gQM → ∞, the Higgs branch physics decouples from the Coulomb branch!
This is because the masses of the massive W bosons go off to infinity with gQM , and
there is a tube of infinite length in the Coulomb branch as one approaches X⊥ → 0.
So, we are left with quantum mechanics on the Higgs branch MN,k.
2) By the ADHM construction, MN,k is actually the moduli space of N instantons in
U(k) gauge theory [22]! This is in accord with the fact that D0 branes are expected
to behave like instantons in D4 branes [23].
3) By theorems about the absence of couplings between vector and hypermultiplets,
the Higgs branch does not receive quantum corrections. Therefore, even the strong
coupling gQM → ∞ limit does not correct the sigma model on MN,k.

We conclude that the Ak−1 (2,0) theory has a description in terms of the quantum
mechanics on the moduli space of N U(k) instantons in the N → ∞ limit. One can
similarly derive a M(atrix) description for the E8 theories with (1,0) supersymmetry
[17, 18]. We will not review that here.

5 Conclusions

I have tried to emphasize in this talk the fruitful interaction that has occurred in
the past year or two between three different research directions. The new interacting
theories in d ≥ 4 seem to have important uses in both the quest for a nonperturbative
definition of (compactified) M-theory, and in the search for resolutions to the vacuum
degeneracy problem.
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Several advances have been made in areas very closely related to my talk since the
conference in Buckow. I summarize some recent developments and future directions
here:
• One can try to use similar M(atrix) formulations to study other interesting field
theories, for instance familiar 4d field theories [24].
• One can use the quantum mechanical formulation of the 6d theories to try and
compute quantities of interest in these conformal field theories, e.g. correlation
functions of various local operators [25].
• One can try to use the M(atrix) descriptions of the “little string theories” of [26]
to compute interesting properties of these novel theories without gravity.
• One can investigate M-theory compactification on six and higher dimensional man-
ifolds in the M(atrix) formulation. There are problems with obtaining a simple
M(atrix) description of T 6 compactifications (as discussed in e.g. [20]), while the
situation seems to be better for Calabi-Yau compactifications [27]. Successful defi-
nitions of the M(atrix) compactifications will involve new theories without gravity.
• One can further pursue the study of interesting phase transitions in 4d N = 1
string vacua [12, 13, 14] by using new constructions (utilizing D-branes or F-theory)
to find simple examples.
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